Chapel Creek Stream Restoration Project Orange County, North Carolina

EEP Project #77

MY-02 Monitoring Report - Final

Data Collected: October 6, 2010 Submitted: November 15, 2010

Prepared for:

North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Parker Lincoln Building 2728 Capital Boulevard, Suite 1H-103 Raleigh, NC 27606

Chapel Creek Stream Restoration EEP Project #77 Chapel Hill, North Carolina Orange County

MY-02 Monitoring Report - Final Prepared By:

Ward Consulting Engineers, P.C. Firm License Number C-2619 Project Manager: Becky Ward, P.E. 8368 Six Forks Road, Suite 104 Raleigh, NC 27615-5083 Ph: 919-870-0526 Fax: 919-870-5359

TABLE OF CONTENTS

I.	Executive Summary	2
II.	Methodology	
	A. Vegetation Methodologies	
В		
III.	References	
	ADDINDAGEG	
	APPENDICES	~
App	pendix A. Project Vicinity Map and Background Tables	
	Figure 1. Vicinity Map	
	Table 1a. Project Components	
	Table 1b. Component Summations	
	Table 3. Project Contacts Table	
	Table 4. Project Attribute Table	
	Tuble 4. Troject Attribute Tuble	10
App	pendix B. Visual Assessment Data	11
11	Figure 2. Consolidated Current Conditions Plan View	
	Table 5. Visual Stream Morphology Assessment Table	
	Table 6. Vegetation Condition Assessment Table	
	Photo 1. Looking downstream at XS-1	18
	Photo 2. Looking downstream at XS-2	18
	Photo 3. Looking downstream at XS-3	19
	Photo 4. Looking downstream at XS-4	
	Photo 5. Looking downstream at XS-5	
	Photo 6. Vegetation Plot 1	
	Photo 7. Vegetation Plot 2	
	Photo 8. Vegetation Plot 3	
	Photo 9. Vegetation Plot 4	22
A nn	pendix C. Vegetation Plot Data	22
App	Table 7. Vegetation Plot Criteria Attainment	
	Table 8. CVS Vegetation Plot Metadata	
	Table 9. CVS Planted and Total Stem Counts	
	Tuble 7. C v 5 Flanced and Total Stelli Counts	23
App	pendix D. Stream Survey Data	26
11	Figure 2. Cross-Section 1	
	Figure 3. Cross-Section 2	
	Figure 4. Cross-Section 3	
	Figure 5. Cross-Section 4	30
	Figure 6. Cross-Section 5	31
	Figure 7. Longitudinal Profile	
	Figure 8. Pebble Count Plots – XS-1	
	Figure 9. Pebble Count Plots – XS-2	
	Figure 10. Pebble Count Plots – XS-4	
	Figure 11. Pebble Count Plots – XS-5	
	Table 10a. Baseline Stream Data Summary	
	Table 10b. Baseline Stream Data Summary	
	Table 11a. Dimensional Morphology Summary	
	Table 11b. Stream Reach Data Summary	40
Δηη	pendix E. Hydrologic Data	<i>1</i> 1
¹ Thh	Table 12. Verification of Bankfull Events	
	1 word 12. To this will be a partition of partition in the control of the control	

I. Executive Summary

The North Carolina Ecosystem Enhancement Program (EEP) has completed a stream restoration project along approximately 1,350 linear feet of Chapel Creek, located on University of North Carolina property in Chapel Hill, Orange County, North Carolina. The project is located in the Morgan Creek Local Watershed planning area, within the 14-digit HUC 03030002060080. The drainage area for Chapel Creek is approximately 0.42 square miles at the downstream limit of the project where a drainage channel through the A.E. Finley Golf Course flows into Chapel Creek. The land use in the watershed consists of University of North Carolina facilities, single family residential, elementary schools, roadways, and forested land. The Morgan Creek LWP noted water quality degradation and impaired biological community in the watershed and identified major watershed stressors as: streambank erosion, excess stormwater runoff, and disturbed riparian buffers. The goals of the restoration project are to improve water quality in Chapel Creek and the Cape Fear river basin by:

- Channel restoration of pattern, profile, and dimension for approximately 960 linear feet of Chapel Creek.
- Channel enhancement/stabilization for approximately 330 feet with a Priority Two restoration approach, bankfull bench and stream bank repairs.
- Restore reach to a stable stream channel, capable of transporting flows and sediment load efficiently.
- Improve aquatic habitat by planting trees along the banks in the cleared section to increase shade and adding more sinuosity to create more pool and riffle sections.
- Reduce sediment inputs to the stream from bank erosion by re-vegetating the banks.

Four vegetation monitoring plots (1-4) were monitored for MY-02. Of these four plots, 100% of the plots meet the vegetation success criteria. The success criterion for planted woody species is 320 stems/acre after MY-03. A mortality rate of ten percent will be allowed after MY-04 (288 stems/acre), with another ten percent allowed after MY-05 (260 stems/acre). Currently the vegetation criteria are being met with an average of 860 planted stems/acre for the site as a whole. Bare banks and invasive exotics are the only notable vegetation problem areas for MY-02. Invasive exotics within the conservation easement include Chinese lespedeza (*Lespedeza cuneata*), Japanese stiltgrass (*Microstegium vimineum*), Japanese honeysuckle (*Lonicera japonica*), Chinese privet (*Ligustrum sinense*), and Oriental bittersweet (*Celastrus orbiculatus*). Although these species have been given different ranks of severity, the functionality of the project is not expected to be impaired significantly. It is likely that all of these species were present in and adjacent to the conservation easement prior to construction. Several small patches and large area of *L. cuneata* and were treated with herbicide during the monitoring year and its status/reoccurrence will be monitored. For additional information relating to vegetation, see Appendix C.

There are not any significant changes in the stream pattern, profile or dimension between MY-01 and the present monitoring year MY-02. One pool at station 6+75 in enlarging and should watched for continued erosion trends next year. Overall, 100% of riffles and pools are stable and functioning as designed. The riffle pebble counts exhibit some fining in several of the cross sections primarily due to vegetation present in the bottom of the channel that has trapped these

finer sediments throughout the reach. Vegetation is present in the channel bottom due to the reduction of water in the channel from the dry weather, creating minor deposition in about 11% of the overall reach length. This minor deposition should be watched for impacts in riffle function and stream centering issues. A few constructed riffles along the reach are exhibiting minor centering issues. The stream cross sections compare well with the previous monitoring years and are maintaining their cross sectional areas with the exception of Cross Section 2. Cross Section 2 is not exhibiting any signs of destabilization however the area shows a 23% increase from the data collected last year. The section will be watched during the upcoming monitoring year. Several bank erosion areas, approximately 9% of the overall reach length, exist primarily on the outside stream bends, noted on Figure 2: Current Conditions Plan View. These outside bends lack vegetation and are therefore susceptible to continued erosion. The engineered structures are all stable and functioning as designed and showed no signs of piping or integrity issues.

Summary information/data related to the occurrence of items such as beaver encroachment and statistics related to performance of various project and monitoring elements can be found in the supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly Restoration Plan) documents available on EEP's website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

II. Methodology

Methodologies follow EEP monitoring report template Version 1.3 (1/15/2010) and guidelines (Lee et al 2008). Photos were taken with a digital camera. A Trimble Geo XT handheld unit with sub-meter accuracy was used to collect vegetation monitoring plot origins, and problem area locations. Cross sectional and longitudinal surveys were conducted using total station survey equipment. Data was entered into AutoCAD Civil3D to obtain dimensions of the cross sections and parameters applicable to the longitudinal profile. Reports were then generated to display summaries of the stream survey.

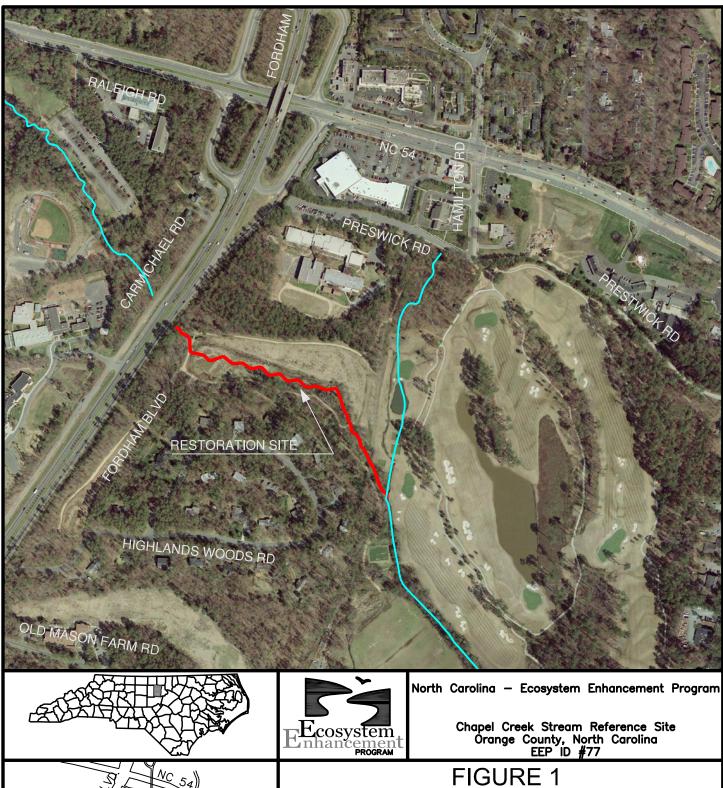
A. Vegetation Methodologies

Level II of the EEP/CVS protocol Version 4.2 was used to collect data for the four representative vegetation monitoring plots within the conservation easement for MY-02. Data collected for these plots are in Appendix C.

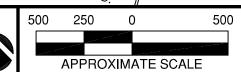
B. Stream Methodologies

Stream profile and cross-sections were surveyed using total station equipment and methods. The survey data was plotted using AutoCAD Civil3D. The longitudinal profile was generated using the MY-01 alignment. Cross sectional data was extracted based on a linear alignment between the end pins.

November 2010


III. References

Lee, Michael T. Peet, Robert K. Roberts, Steven D., Wentworth, Thomas R. (2008). CVS-EEP Protocol for Recording Vegetation Version 4.2.


Weakley, Alan (2007). Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas. http://www.herbarium.unc.edu/flora.htm.

November 2010

Appendix A. Project Vicinity Map and Background Tables

FIGURE 1 RESTORATION SITE CHAPEL CREEK AERIAL VICINITY MAP

WARD CONSULTING ENGINEERS, PC 8368 Six Forks Rd, Suite 104 Raleigh, NC 27615

Raleigh, NC 27615 PH: (919) 870-0526 FAX (919) 870-5359

Table 1a. Project Components

	Table 1a. Project Components Chapel Creek Stream Restoration-Project No. 77											
Project Compone nt or Reach ID	Existing Feet/Acres	Restorat ion Level	Approac h	Footag e or Acreag e	Stationin g	Mitigation Ratio	Mitigation Units	BMP Elem ents ¹	Comment			
Reach I	961 lf	R	P1	994 If	00+00 - 9+94	1:1	961		Includes 900 If of channel relocation			
Reach II	330 lf	E2	P3	356 lf	9+94 - 13+50	2.5:1	132		Reach II consists of a mix of P2 and P3 with a dominance of the approaches indicated over the stationing indicated.			

^{1 =} BR = Bioretention Cell; SF = Sand Filter; SW = Stormwater Wetland; WDP = Wet Detention Pond; DDP = Dry Detention Pond; FS = Filter Strip; S = Grassed Swale; LS = Level Spreader; NI = Natural Infiltration Area, O = Other, CF = Cattle Fencing; WS = Watering System; CH = Livestock Housing

Table 1b. Component Summations

rable 10. Component	rable 16. Component Summations								
Table 1b. Component Summations									
Chapel Creek Stream Restoration-Project No. 77									
Restoration Level	Stream (If)	Riparian Wetland (Ac)		Non- Riparian (Ac)	Upland (Ac)	Buffer (Ac)	ВМР		
		Riverine	Non- Riverine						
Restoration	961								
Enhancement									
Enhancement I									
Enhancement II	330								
Creation									
Preservation									
HQ Preservation									
		0	0						
Totals (Feet/Acres)	1291	0		0	0	0	0		
MU Totals	1093					0			
	Non-Applicable								

Table 2. Project Activity and Reporting History

Table 2. Project Activity and Reporting History Chapel Creek Stream Restoration-Project No. 77

Elapsed Time Since Grading Complete: 2 yrs 3 months Elapsed Time Since Planting Complete: 2 yrs 3 Months

Number of Reporting Years¹: 2

	Data Collection	Completion or
Activity or Deliverable	Complete	Delivery
Restoration Plan		Aug-06
Final Design – Construction Plans		Jun-07
Construction		Jul-08
Temporary S&E mix applied to entire project area		Jul-08
Permanent seed mix applied to enitre project area		Jul-08
Repairs to stream due to damages from storm events		Mar-09
Temporary S&E mix applied to area disturbed by repairs		Mar-09
Permanent seed mix applied to area disturbed by repairs		Mar-09
Containerized and B&B plantings for entire reach		Mar-09
Mitigation Plan / As-built (Year 0 Monitoring – baseline)	Mar-09	Mar-09
Year 1 Monitoring	Sept-09	Nov-09
Year 2 Monitoring	Oct-10	Nov-10
Year 3 Monitoring		
Year 4 Monitoring		
Year 5 Monitoring		
Year 5+ Monitoring		

^{1 =} Equals the number of reports or data points produced excluding the baseline

November 2010

Table 3. Project Contacts Table

Table 3. P	roject Contacts Table
Chapel Creek Stre	am Restoration-Project No. 77
Designer	Ward Consulting Engineers, P.C.
	8368 Six Forks Road Suite 104
	Raleigh, NC 27615-5083
Primary project design POC	Becky Ward 919-870-0526
Construction Contractor	River Works, Inc.
	800 Regency Parkway, Suite 200
	Cary, NC 27518
Construction contractor POC	Will Pederson 919-459-9001
Survey Contractor	Level Cross Surveying, PLLC (all surveying)
	668 Marsh County Lane
	Randleman, NC 27317
Survey contractor POC	Sherie Willard 336-495-1713
Planting Contractor	River Works, Inc.
	800 Regency Parkway, Suite 200
	Cary, NC 27518
Planting contractor POC	Will Pederson 919-459-9001
Seeding Contractor	River Works, Inc.
	800 Regency Parkway, Suite 200
	Cary, NC 27518
Contractor point of contact	Will Pederson 919-459-9001
Seed Mix Sources	Green Resource 336-855-6363
Nursery Stock Suppliers	Mellow Marsh Farm, Inc. 919-742-1200
	Cure Nursery 919-542-6186
Monitoring Performers	Ward Consulting Engineers, P.C.
	8368 Six Forks Road Suite 104
	Raleigh, NC 27615-5083
Stream Monitoring POC	Becky Ward 919-870-0526
Vegetation Monitoring POC	Chris Sheats - The Catena Group - 919-732-1300
Wetland Monitoring POC	Chris Sheats - The Catena Group - 919-732-1300

Table 4. Project Attribute Table

Table 4. Project Attribute Table			
Table 4. Project Att			
Chapel Creek Stream Restorat			
Project County	Oran	•	
Physiographic Region	·		
Ecoregion	n Central Piedmont		
Project River Basin	Cape Fear R		
USGS HUC for Project (14 digit)	03030002		
NCDWQ Sub-basin for Project	03-06		
Within extent of EEP Watershed Plan?	Yes		
WRC Hab Class (Warm, Cool, Cold)	War		
% of project easement fenced or demarcated	1009		
Beaver activity observed during design phase?	No		
Restoration Component	t Attributo Toblo		
nestoration component	Reach 1	Reach 2	
Drainage area	0.42 so		
Stream order	2	1 ····	
Restored length (feet)	961	330	
Perennial or Intermittent	Peren		
Watershed type (Rural, Urban, Developing etc.)	Urba		
Watershed LULC Distribution (e.g.)	3130		
Residential	32%	<u>/</u>	
Ag-Row Crop			
Ag-Livestock	0%		
Forested	50%		
Open Space, grass cover >75%	9%		
Watershed impervious cover (%)	9%		
NCDWQ AU/Index number	16-41-2-8		
NCDWQ classification	WS-IV;NSW		
303d listed?	No.		
Upstream of a 303d listed segment?	Yes		
Reasons for 303d listing or stressor	Standard \		
Total acreage of easement	5.15		
Total vegetated acreage within the easement	4.99		
Total planted acreage as part of the restoration	3.34		
Rosgen classification of pre-existing	G4	C4/G4	
Rosgen classification of As-built	C4	C4	
Valley type	VIII	VIII	
Valley slope	0.0136	0.017	
Valley side slope range (e.g. 2-3.%)	7.8% - 1		
Valley toe slope range (e.g. 2-3.%)	2.56% - (
Cowardin classification	Riveri		
Trout waters designation	No	No	
Species of concern, endangered etc.? (Y/N)	No	No	
Dominant soil series and characteristics		.10	
Series	Chewacla	Chewacla	
Depth	-	-	
Clay%	_	_	
K	-	_	
T I	_		
1			

Use N/A for items that may not apply. Use "-" for items that are unavailable and "U" for items that are unknown

Appendix B. Visual Assessment Data

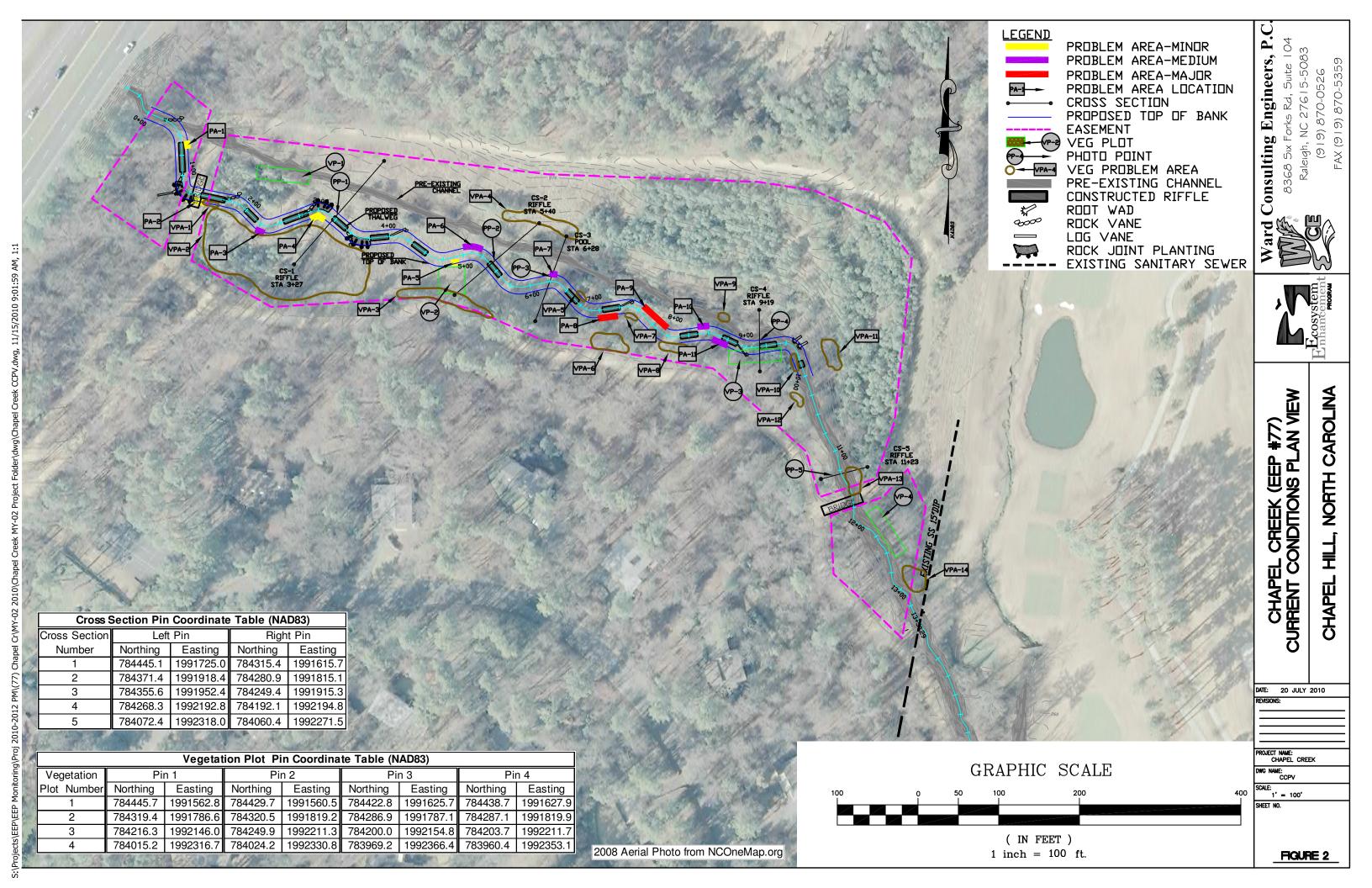


Table 5

Visual Stream Morphology Stability Assessment

Reach ID **Assessed Length** Reach 1 (Restoration) 961

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			6	106	89% (855/961)			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	18	18			100%			
1. Bed	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	17	17			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	17	17			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	17	17			100%			
		2. Thalweg centering at downstream of meander (Glide)	17	17			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			5	105	95% (856/961)			95% (856/961)
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			4	60	97% (901/961)			97% (901/961)
				Totals	9	165	91% (796/961)	0	0	91% (796/961)
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	8	8			100%			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	8	8			100%			

Criteria, Definitions and Thresholds for Visual Stream Morphology Assessments

Channel Sub- Catalogy Metric	to distinguish from Mass Wasting
or iffiles or filling or plant all control filling or plant is an one-bit terminal to the characteristic by send or great parts about the characteristic by send or great about the characteristic by	to distinguish from Mass Wasting
decrete lengths. "Indicators include perchal all is buckurse, channel bod "layer" network paper in making why developed in the length of 12" and is at least 15 length in length or 20" of the bod bod review in length or 20" of the department of the perchal assessment of consecution of the point of the perchange	to distinguish from Mass Wasting
statamement for the riffle. Repeat packée counts about é support an assessment of riffle firing where overlisp occurs (see subhist) garde 2 below describer permedicing for years decide 5 septemble. 2. Manader Pool Condition 1. Direth Sufficient? The metric is used to assess meander pools and also step pools along a Resigne B type charmet reaches. For steppord condition of the pools will be evaluated and talled there and under the Helshill Sub-Category below. The man pool family depth of the pools will be evaluated and talled from and under the Helshill Sub-Category below. The man pool family depth of the pool will be evaluated and talled from and under the Helshill Sub-Category below. The man pool family depth from the Act-bull/basseline survey can be utilized to make this determination. Exhibit 3 provides residual pool depths using the 1s. Inselfactor or range of mean channer of the pool between the pool from the pool family depth that type researching projects. 2. Lendth appropriate? This metric will only be applied to meander pool. The meander pool length shall be provided to be against the color between the first and the head of the downsteam rifls. 4. That weep Position 1. That weep centering at upstream of meander bend (Runi)? The metric will only be applied to meander pool length shall be provided to be against the color bend to pool the pool to the	
Condition Condition Condi	
distance between the tail of the upstream rifle and the head of the downstream rifle. 4. Thailweg Position 1. Thailweg Position 1. Thailweg centering at upstream of meander bend (Run)? This metric is used to characterize flow paths along rifle-run-pool transitions. The thailweg is expected to be against the outer bank too far above the bend appox may indicate the outer bank too far abov	
uuter bank in the bend apex, but vectors oriented towards the outer bank too far above the bend apex may indicate the potential for increased bank erosion. Similarly, the potential for increased bank erosion is also expected to demonstrate flow path centering (Metric 4.2 below). The current-year thalweg rendered on the CCPV figure can assist in this assessment. 2. Thalweg centering at downstream of meander bend (Gilde)? See Metric 4.1 above Banks with evident scour /erosion Bank Minimum Height Length Feight Len	
2. Bank 1. Scoured/Eroding Bank In order to better assess continued bank erosion risk, tallied bank segments are also characterized with respect to the 2. Undercut proximity and integrated extent of stabilizing vegetation. Continued erosion risk for a given bank instability object is Banks undercut/overhanging to the extent that mass wasting appears likely? Does NOT include undercuts that modest, essentially adjusted downwards by adjacent ownwards by adjacent own and or stabilizing ownwards by adjacent own adjacent ownwards by adjacent own adjacent ownwards by adjacent own a	
In order to better assess continued bank erosion risk, tallied bank segments are also characterized with respect to the period of the proximity and integrated extent of stabilizing vegetation. Continued erosion risk for a given bank instability object is Banks undercut/overhanging to the extent that mass wasting appears likely? Does NOT include undercuts that modest, essentially adjusted downwards by adjacent mature vegetation. Continued erosion risk for a given bank instability object is Banks undercut/overhanging to the extent that mass wasting appears likely? Does NOT include undercuts that modest, essentially adjusted downwards by adjacent mature vegetation. Continued erosion risk for a given bank instability of the extent that mass wasting appears likely? Does NOT include undercuts that modest, essentially adjusted downwards by adjacent mature vegetation. Continued erosion risk tallied bank segments are also characterized with respect to the period of the period	
2. Undercut proximity and integrated extent of stabilizing vegetation. Continued erosion risk for a given bank instability object is Banks undercut/overhanging to the extent that mass wasting appears likely? Does NOT include undercuts that modest, essentially adjusted downwards by adjacent mature vegetation and/or stabilizing roots. One or more mature trees in closes decopacy sustainable stable and are provided nabilization.	
proximity (e.g. 10 feet or less) or obvious integration of root mass within the bank failure are characteristics that would This tabbe provides a guide for working thresholds for prompt the tallying of a given bank object into the additional sub-category related to risk of further instability (columns_st_l) bank erosion cataloging/mapping based on bank height. If or the actual data tabbe. Essentially, the vegetative elements of rooting density and depth (e.g. from a BEHI assessment) For the bank height ranges above, the minimum length of	
3. Mass Wasting need to be considered here. Bank slumping calving/collapse? bank to be mapped and tallied is specified. For example, where banks are <3 feet high, only map an unstable segment if it is ≥ 10 feet. ⁵	
3. Structures 1. Overall Integrity The assessment of engineered structure performance should include all structures that provide grade control, bank protection, or habitat functions. These include Vanes, J-hooks, and rootwads, etc. Bulk of structure physically intact with no dislodged boulders or logs? Using callouts or some other means the protection, or habitat functions. These include Vanes, J-hooks, and rootwads, etc.	
2. Grade Control Bed grade control maintained across the still structure? No evident loss of bed elevation immediately upstream of structure? Some piping alone will not constitute a loss of grade control. Using callouts or some other means to structure? Some piping alone will not constitute a loss of grade control.	
2a. Piping Catalog structures lacking any substantial flow underneath sills or around arms? Using calcuts or some other means t structure with red 'P' if significant pip	re has occurred maintain legibility, annotate
See exhibit 4 below for determining structural sphere of influence. If the amount of bank that is deemed to be actively Grading within the structures sphere of influence accessed: 55% of the total bank footage within the structures sphere of influence, then the structure should be classified as not providing adequate bank protection in the data table.	or maintain legibility, annotate lost grade control or maintain legibility, annotate no maintain legibility, annotate ng has occurred
4. Habitat Are pools maintained @ - Max Pool Depth : Mean Bankfull Depth > 1.8? For rootwads, habitat provision means interacting with baseflow and providing cover. Structure with red 'H' if structure is not structure in the	re has occurred o maintain legibility, annotate lost grade control o maintain legibility, annotate ng has occurred o maintain legibility, annotate o maintain legibility, annotate

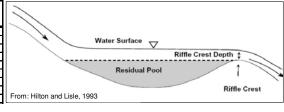

Exhibit 1. Examples of bar features warranting concerning related to cataloging item 1.1.1 of the assessment

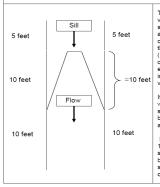
Exhibit 3. Residual Pool Depth Table - Relating 1.6 criterion for typical mean riffle depths to residual pool depths

This residual pool table was provided in the event the tracking of bankfull at each pool feature to estimate a Dmax was inconvenient. Estimating the residual pool depth by measuring the max pool depth to water surface and subtracting the water depth at the riffle head may provide a more convenient way under certain circumstances to estimate in the field. For this reason the exhibit table provides a relationship between the 1.6 criterion applied to mean riffle depth for the site and the resulting residual pool depths.


Mean Riffle Depth D _{bkf}	Multiplier	Target Bankfull Pool Max	Residual Pool Depth
1.0	1.6	1.6	0.6
1.5	1.6	2.4	0.9
2.0	1.6	3.2	1.2
2.5	1.6	4.0	1.5
3.0	1.6	4.8	1.8
3.5	1.6	5.6	2.1
4.0	1.6	6.4	2.4
4.5	1.6	7.2	2.7
E 0	1.6	0.0	2.0

5 = The above was developed because of the need to have a threshold given the large number of performers and to avoid spending time trying to catalog and map small objects that if excluded would have minimal overall impacts on the performance percentages. It is a guide that tries to strike a balance between the obvious need to have a threshold, yet provide confidence that the site conditions are accurately represented. For example, a scenario where 1 object nearly exceeding the threshold were to occur every 100 feet of bank height (which would be a high frequency and unlikely) with a bank height of 5 feet, would yield an error of ~3%. However, if the observer is encountering a truly high number of objects just below the threshold in the above table (e.g. > 1 per 100 feet of bank channel on average) and is concerned that the exclsuion of such objects is going to misrepresent the site conditions, then judgement should be applied and objects below the threshold may be cataloged. If a rare condition as described does occur and the thresholds are not utilized then a table footnote explaining this should be included.

Lastly, given the increase in overall area and the implications to stability, greater banks heights required smaller threshold minimums.


Exhibit 2. Graphic depicting embedding of riffles with fine material

Progressing from top to bottom, the series of graphics to the left depicts the fining of interstial spaces between coarser particles. This describes increasing levels of embededness in riffles. The observer must have an understanding of the intended substrate distributions/texture of the bed for the projects riffles when assessing this. However, as a guideline for streams in the coarse gravel to cobble range, the 2nd panel from the top represents a visual guideline for the condition that would begin to elicit concern for this parameter, but still contains a good deal of coarse material. Progressing from that state to the conditions depicted in the the 3rd and 4th panel represents a visual que for significant emdedding.

From USEPA (EPA 841-B-97-003 - Nov 1997)

Exhibit 4. Extent of Structural Influence for Bank Protection

The drawing is a guideline for the extent of influence vane arms exert on stream banks. The bracketed segment (10ft) immediately adjacent to the vane arm is multiplied by 5 to determine the total length of bank influenced by a cross vane. This includes the bank length adjacent to each vane arm, I length (10 feet) below each van arm, and ½ length (5 feet) on each bank above the uppermost structural element (in this case the vane sill), yielding 50 feet in this example case. In this example a single arm vane or j-hook would only influence 25ft of bank.

If the amount of recent bank erosion observed within the extent of influence exceeds 15% then the structure is deemed <u>not</u> to be providing adequate bank protection. In the above examples this would amount to ~8 and 4 feet, respectively.

If in an earlier assessment the structure failed the 15% bank protection criteria but the erosion has subsequently stabilized, then the observer can use best professional judgment to determine if the structure is currently meeting the bank protection criteria Table 6

Vegetation Condition Assessment

Planted Acreage¹

1

- iuiitou rioi ougo	·					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Pattern and Color	0	0.00	0.0%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	Pattern and Color	0	0.00	0.0%
Total					0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	Pattern and Color	0	0.00	0.0%
Cumulative Tota				0	0.00	0.0%

Easement Acreage²

5.153

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Areas or points (if too small to render as polygons at map scale).	1000 SF	Brown Outline	11	0.48	9.3%
5. Easement Encroachment Areas ³	Areas or points (if too small to render as polygons at map scale).	none	Pattern and Color	0	0.00	0.0%

- 1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.
- 2 = The acreage within the easement boundaries.
- 3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.
- 4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by EEP such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particular interest given their extreme risk/threat level for mapping as points where isolated specimens are found, particularly ealery in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons, particularly for situations where the condition for an area is somewhere between isolated specimens and dense, discreet patches. In any case, the

High Concern:		Low/Moderate Concern:			
Vines	Genus/Species	Shrubs/Herbs	Genus/Species	Shrubs/Herbs	Genus/Species
Kudzu	Pueraria lobata		Polygonum cuspidatum	Japanese Privet	Ligustrum Japonicum
Porcelain Berry	Ampelopsis brevipeduncu		Celastrus orbiculatus	Glossy Privet	Ligustrum lucidum
Japanese Honeysuckle	Lonicera japonica	Multiflora Rose	Rosa multiflora	Fescue	Festuca spp.
Japanese Hops	Humulus japonicus	Russian olive	Elaeagnus angustifolia	English Ivy	Hedera helix
Wisterias	Wisteria spp.	Chinese Privet	Ligustrum sinense	Microstegium	Microstegium vimineum
Winter Creeper	Euonymus fortunei	Chinese Silvergrass	Miscanthus sinensis	Burning Bush	Euonymus alatus
Bush Killer (Watch List)	Cayratia japonica	Phragmites	Phragmites australis	Johnson Grass	Sorghum halepense
·		Bamboos	Phyllostachys spp	Bush Honeysuckles	Lonicera, spp.
Trees		Sericea Lespedeza	Sericea Lespedeza	Periwinkles	Vinca minor
Tree of Heaven	Ailanthus altissima	Garlic Mustard (Watch List)	Alliaria petiolata	Morning Glories	Morning Glories
Mimosa	Albizia julibrissin	Cogon Grass (Watch List)	Imperata cylindrica	Bicolor Lespedeza (Watch List)	Lespedeza bicolor
Princess Tree	Paulownia tomentosa	Giant Reed (Watch List)	Arundo donax	Chinese Yams (Watch List)	Dioscorea oppositifolia
China Berry	Melia azedarach	Tropical Soda Apple (Watch List)	Solanum viarum	Air Potato (Watch List)	Dioscorea bulbifera
Callery Pear	Pyrus calleryana	Japanese Spirea (Watch List)	Spiraea japonica	Japanese Climbing Fern (Watch List)	Lygodium japonicum
White Mulberry	Morus alba	Japanese Barberry (Watch List)	Berberis thunbergii	, , , , , , , , , , , , , , , , , , ,	,
Tallow Tree (Watch List)	Triadica sebifera	·			

Stream Station Photos

Photo 1. Looking downstream at XS-1

Photo 2. Looking downstream at XS-2

Photo 3. Looking downstream at XS-3

Photo 4. Looking downstream at XS-4

Photo 5. Looking downstream at XS-5

Vegetation Monitoring Plots Photos

Photo 6. Vegetation Plot 1

Photo 7. Vegetation Plot 2

Photo 8. Vegetation Plot 3

Photo 9. Vegetation Plot 4

Appendix C. Vegetation Plot Data

Table 7. Vegetation Plot Criteria Attainment								
Vegetation Plot ID	Tract Mean							
VP1	Yes							
VP2	Yes	100%						
VP3	Yes	100%						
VP4	Yes							

Tab	le 8. CVS Vegetation Plot Metadata					
Report Prepared By	The Catena Group					
DESCRIPTION OF WORKS	SHEETS IN THIS DOCUMENT					
	Description of database file, the report worksheets, and a					
Metadata	summary of project(s) and project data.					
	Each project is listed with its PLANTED stems per acre, for					
Proj, planted	each year. This excludes live stakes.					
	Each project is listed with its TOTAL stems per acre, for each					
	year. This includes live stakes, all planted stems, and all					
Proj, total stems	natural/volunteer stems.					
	List of plots surveyed with location and summary data (live					
Plots	stems, dead stems, missing, etc.).					
Vigor	Frequency distribution of vigor classes for stems for all plots.					
Vigor by Spp	Frequency distribution of vigor classes listed by species.					
	List of most frequent damage classes with number of					
Damage	occurrences and percent of total stems impacted by each.					
Damage by Spp	Damage values tallied by type for each species.					
Damage by Plot	Damage values tallied by type for each plot.					
Planted Stems by Plot and	A matrix of the count of PLANTED living stems of each					
Spp	species for each plot; dead and missing stems are excluded.					
	A matrix of the count of total living stems of each species					
	(planted and natural volunteers combined) for each plot; dead					
ALL Stems by Plot and spp	and missing stems are excluded.					
PROJECT SUMMARY						
Project Code	77					
project Name	Chapel Creek					
Description						
River Basin	Cape Fear					
length(ft)						
stream-to-edge width (ft)						
area (sq m)						
Required Plots (calculated)						
Sampled Plots	4					

EEP Project Code 77. Project Name: Chapel Creek

Table 9: Planted and Total S	Stem Counts		Current Plot Data (MY2 2010)						Annual Means								
			077-01-0001		077-01-0002		077-01-0003		077-01-0004		MY2 (2010)		.0)				
Scientific Name	Common Name	Species Type	P-LS	P-all	Т	P-LS	P-all	T	P-LS	P-all	T	P-LS	P-all	T	P-LS	P-all	T
Alnus serrulata	hazel alder	Shrub Tree									63						63
Baccharis halimifolia	eastern baccharis	Shrub Tree			4			1			11			1			17
Betula nigra	river birch	Tree					2	2		4	4		6	52		12	58
Calycanthus	sweetshrub												1	1		1	1
Carpinus caroliniana	American hornbeam	Shrub Tree			1						25		2	2		2	28
Cephalanthus occidentalis	common buttonbush	Shrub Tree								1	1					1	1
Diospyros virginiana	common persimmon	Tree		1	1		3	3		5	6					9	10
Elaeagnus umbellata	autumn olive	Shrub									1						1
Fraxinus pennsylvanica	green ash	Tree			1		4	4		2	3		7	7		13	15
Hibiscus moscheutos	crimsoneyed rosemallo	Shrub		5	5											5	5
Juglans nigra	black walnut	Tree									2						2
Ligustrum sinense	Chinese privet	Shrub Tree									1						1
Lindera benzoin	northern spicebush	Shrub Tree								8	8		1	1		9	9
Liquidambar styraciflua	sweetgum	Tree			7						67			20			94
Magnolia virginiana	sweetbay	Shrub Tree		3	3											3	3
Morella cerifera	wax myrtle	Shrub Tree									3			3			6
Pinus taeda	loblolly pine	Tree			73						100			5			178
Platanus occidentalis	American sycamore	Tree			1		2	2		1	4					3	7
Quercus nigra	water oak	Tree					1	1					2	2		3	3
Rosa multiflora	multiflora rose	Shrub Vine									1						1
Rosa palustris	swamp rose	Shrub		5	5											5	5
Salix nigra	black willow	Tree			51						1						52
Ulmus alata	winged elm	Tree			1						1						2
Vaccinium corymbosum	highbush blueberry	Shrub		1	1											1	1
Viburnum	viburnum	Shrub Tree			2												2
Viburnum dentatum	southern arrowwood	Shrub Tree		1	1		2	2		12	12					15	15
Viburnum nudum	possumhaw	Shrub Tree								2	2					2	2
Xanthorhiza simplicissima	yellowroot	Shrub								1	1					1	1
		Stem count	0	16	157	0	14	15	0	36	317	0	19	94	0	85	583
		size (ares)				1		1		1		4					
		size (ACRES)	(S) 0.02			0.02		0.02		0.02		0.10					
		Species count		Ů		0			0	·					0	16	28
		Stems per ACRE	0	647.5	6354	0	566.6	607	0	1457	12829	0	768.9	3804	0	860	5898

Appendix D. Stream Survey Data

Project:			(bankfull)					
Cross Sec	tion:	Cross Section	1			MY0	MY1	MY2
Feature		Riffle			A (BKF)	30.6	29.2	28.2
Station:		3+27			W (BKF)	19.9	19.2	19.1
Date:		10/5/10			Max d	2.4	2.3	2.6
Crew:		ZP, SV			Mean d	1.5	1.5	1.5
					W/D	12.9	12.6	12.9
	MY00-YE	AR		MY01-Ye	ar		MY02-Yea	ar
Station	Elevation	Notes	Station	Elevation		Station	Elevation	Notes
0.00	266.30	LPIN	0.00	266.32	LPIN	0.00	266.35	LPIN
0.64	266.18		18.18	265.11		8.46	265.83	
17.02	265.02		29.77	265.02		18.26	265.20	
44.50	265.04		44.34	265.24		30.00	265.18	
60.68	265.73		61.77	265.73		50.07	265.35	
82.33	266.29	BKF L TOBL	72.92	265.96		66.96	265.86	
86.28	264.74		78.71	266.05		78.34	266.22	
89.10	264.37		82.59	266.26	BKF L TOBL	82.72	266.29	TOBL BKF L
89.64	264.12		84.02	265.61		86.10	264.85	
91.09	264.07		86.10	264.76		87.38	264.71	
92.60	263.89	TW	88.63	264.47		89.05	264.62	
94.63	264.11		89.44	264.21		89.90	263.82	TOE L
95.18	264.28		91.09	264.06		90.61	263.70	TW
96.67	264.35		92.55	263.95	TW	91.53	263.97	
99.42	265.03		94.36	264.05		92.69	263.96	
102.61	266.48	BKF R TOBR	95.80	264.36		94.04	264.13	TOE R
110.65	266.69		97.38	264.54		94.78	264.41	
122.07	267.18		98.88	264.98		96.37	264.73	
129.16	267.75		102.19	266.45	TOBR	96.92	264.89	
162.74	269.39		111.02	266.62		98.11	264.86	
169.80	269.71	RPIN	125.08	267.42		98.64	265.16	
			138.99	268.25		100.16	265.48	
			155.50	268.91		102.42	266.60	TOBR
			169.83	269.68	RPIN	111.42	266.85	
						122.66	267.35	
						131.99	267.96	
						145.75	268.55	
						158.85	269.27	
						167.57	269.74	
İ						169.70	269.72	RPIN

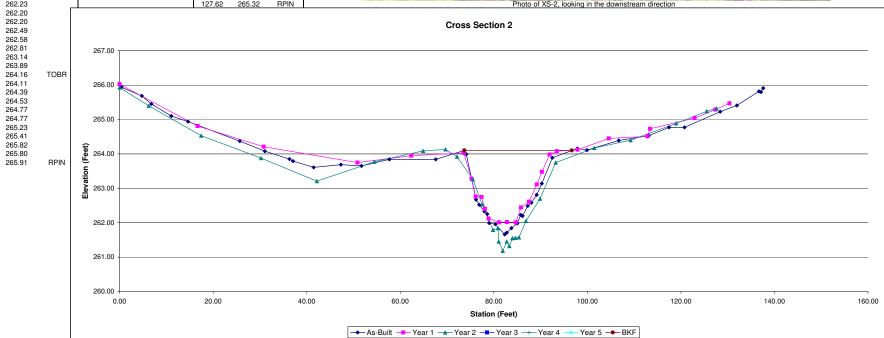
Cross Section 1 271.00 270.00 269.00 Elevation (Feet) 266.00 - 266. 265.00 264.00 263.00 -60.00 0.00 20.00 40.00 80.00 100.00 120.00 140.00 160.00 180.00 Station (Feet) → As-Built — Year 1 → Year 2 → BKF

Project:		Chapel Creek	(Summary	(bankfull)	
Cross Section	on:	Cross Section	n 2			MY0	MY1	MY2
Feature		Riffle			A (BKF)	29.9	25.0	36.9
Station:		5+40			W (BKF)	23.0	19.1	31.0
Date:		10/5/10			Max d	2.4	2.0	2.9
Crew:		ZP, SV			Mean d	1.3	1.3	1.2
					W/D	17.6	14.6	26.1
	MY00-YE/	AR		MY01-Ye	ar		MY02-Year	
	Elevation	Notes	Station	Elevation		Station	Elevation	Notes
0.00	266.03	LPIN	0.00	266.03	LPIN	0.00	265.93	LPIN
0.38	265.94		16.68	264.81		6.21	265.40	
4.75	265.69		30.81	264.21		17.44	264.53	
6.82	265.45		50.86	263.75		30.23	263.88	
11.04	265.10		62.35	263.95		42.18	263.21	
14.64	264.94		73.58	264.03	BKF L TOBL	54.45	263.77	
25.70	264.37		75.25	263.28		64.88	264.09	
31.04	264.08		76.14	262.76		69.68	264.13	BKF L
36.34	263.85		77.41	262.75		72.12	263.92	TOBL
37.06	263.79		78.13	262.40		75.52	263.26	
41.50	263.61		78.89	262.12		77.55	262.53	
47.31	263.69		81.12	262.01	TOE L	79.82	261.79	
51.71	263.65		82.79	262.02		80.88	261.84	
57.67	263.84		84.67	262.01	TOE R	81.07	261.45	TOE L
67.59	263.84		85.80	262.44		81.90	261.18	TW
73.72	264.10	BKF L TOBL	87.54	262.61	TW	82.76	261.45	
74.13	263.99		89.21	263.11		83.33	261.32	
76.20	262.67		90.31	263.48		83.97	261.55	
76.90	262.52		91.93	263.98	TOBR	84.61	261.56	
77.98	262.33		93.46	264.08	BKF R	85.37	261.57	TOE R
78.59	262.25		97.93	264.12		86.89	262.05	
79.00	261.99		104.58	264.45		89.87	262.70	
80.33	261.96		112.83	264.51		93.23	263.75	TOBR
82.32	261.66	TW	113.42	264.73		101.49	264.17	
82.76	261.71		122.91	265.04		109.26	264.40	
83.77	261.84		127.37	265.29	RPIN	119.00	264.89	
85.02	261.98		130.38	265.47		125.53	265.24	
85.73	262.23					127.62	265.32	RPIN
86.10	262.20							
86.17	262.20							
87.25	262.49							
88.04	262.58							
89.18	262.81		267.00)				
90.27	263.14							
92.52	263.89							
07.07	00440	TORR		1				

97.87

99.91 106.72

113.11 117.44


120.77

128.39 131.96

136.68 137.13

137.60

Project:		Chapel Creek	(Summary (bankfull)				
Cross Sec	tion:	Cross Section	า 3			MY0	MY1	MY2
Feature		Pool			A (BKF)	31.7	31.1	30.7
Station:		6+28			W (BKF)	24.8	27.1	22.9
Date:		10/5/10			Max d	3.3	3.2	3.1
Crew:		ZP, SV			Mean d	1.3	1.1	1.3
					W/D	19.4	23.6	17.0
	MY00-YE			MY01-Ye			MY02-Year	
Station	Elevation		Station	Elevation		Station	Elevation	Notes
0.00	265.48	LPIN	0.00	265.48	LPIN	0.00	265.44	LPIN
0.52	265.42		10.55	264.11		2.33	265.13	
2.73	265.16		18.73	263.26		8.21	264.36	
9.49	264.18		31.24	262.68		15.58	263.51	
14.90	263.52		35.17	262.69		24.11	262.95	
20.47	263.10		41.14	262.60		30.15	262.58	
23.77	263.10		46.79	262.78		43.70	262.78	
28.58	262.56		49.43	262.79	BKF L TOBL	50.17	262.80	TOBL
35.48	262.64		51.32	262.31		50.79	262.70	BKF L
42.42	262.70		51.38	262.31		51.21	262.23	
48.60	262.78		54.13	260.47		51.94	261.76	
50.14	262.71	TOBL BKF L	54.31	260.46		54.27	259.78	TOE L
50.34	262.67		54.51	259.75		56.14	259.63	TW
52.36	261.47		55.46	259.59	TW	57.23	259.91	
53.15	260.86		57.44	259.89		58.67	260.11	
53.53	260.37		58.64	260.51		59.72	260.43	TOE R
55.64	259.43	TW	59.48	260.78		60.66	261.28	TOBR
55.72	259.62		60.26	261.17		62.52	261.63	
56.04	259.60		62.56	261.58		64.67	261.72	
57.72	259.89		66.21	262.10		66.31	262.01	
60.40	260.93		71.54	262.42		68.06	261.83	
61.16	261.44		75.60	262.70		68.63	262.31	
62.34	261.53		83.12	263.41	TOBR	71.52	262.52	
64.14	261.80		83.12	263.41		74.38	262.76	
67.47	262.07		95.56	263.56		81.44	263.33	
72.39	262.29		103.84	263.66		91.21	263.49	
73.32	262.54	BKF R	112.64	263.65	RPIN	100.50	263.48	
78.30	263.05	TOBR				108.81	263.67	
81.32	263.20							
86.02	263.42							
95.12	263.60							
97.05	263.61							
112.14	263.62	RPIN						
112.14	263.62							

Cross Section 3

286.00

284.00

284.00

284.00

284.00

284.00

284.00

284.00

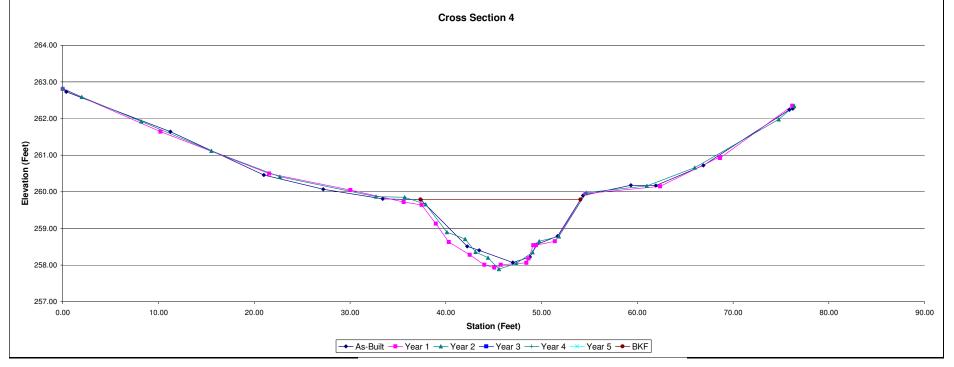
284.00

284.00

284.00

284.00

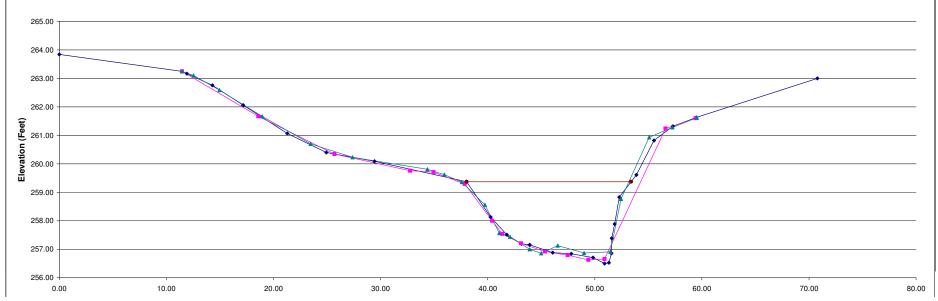
284.00


284.00

Station (Feet)

As-Built - Year 2 - BKF

Project:		Chapel Creek				Summary ((banktull)	
Cross Sec	ction:	Cross Section	4			MY0	MY1	MY2
Feature		Riffle			A (BKF)	17.8	19.4	19.8
Station:		9+19			W (BKF)	16.7	18.4	18.6
Date:		10/5/10			Max d	1.7	1.8	2.0
Crew:		ZP, SV			Mean d	1.1	1.1	1.1
					W/D	15.7	17.5	17.5
	MY00-YE			MY01-Ye			MY02-Year	
Station	Elevation		Station	Elevation		Station	Elevation	Notes
0.00	262.82	LPIN	0.00	262.81	LPIN	0.00	262.82	LPIN
0.37	262.73		10.20	261.64		1.98	262.59	
11.25	261.64		21.56	260.50		8.18	261.92	
21.00	260.46		30.04	260.05		15.52	261.12	
27.20	260.07		35.61	259.72	BKF L	22.67	260.41	
33.42	259.81		37.48	259.64	TOBL	32.71	259.87	
37.40	259.78		38.96	259.13		35.71	259.85	BKF L
37.36	259.79	BKF L TOBL	40.32	258.63		37.89	259.66	TOBL
42.23	258.51		42.50	258.28		40.12	258.90	
43.48	258.40		44.02	258.01		42.02	258.71	
46.99	258.07	TW	45.06	257.93	TW	43.10	258.36	
48.79	258.22		45.75	258.01		44.41	258.20	TOE L
49.47	258.56		48.42	258.06		45.55	257.89	TW
51.67	258.79		48.64	258.18		47.36	258.05	
54.33	259.90	BKF R TOBR		258.54		49.07	258.35	TOE R
59.33	260.18		49.42	258.54		49.75	258.65	
61.93	260.17		51.39	258.65		51.81	258.78	BKF R
66.89	260.72		54.59	259.95	BKF R TOBR	54.66	259.98	TOBR
75.89	262.24		62.38	260.15		61.00	260.16	
76.23	262.27	RPIN	68.60	260.95		65.99	260.66	
			68.64	260.92		74.77	261.98	
			76.18	262.35	RPIN	76.39	262.34	RPIN



Project:		Chapel Creek	(Summary	(bankfull)	
Cross Sec	tion:	Cross Section				MY0	MY1	MY2
Feature		Riffle			A (BKF)	28.9	29.8	32.5
Station:		11+23			W (BKF)	15.4	16.3	17.5
Date:		10/5/10			Max d	2.9	2.7	2.8
Crew:		ZP, SV			Mean d	1.9	1.8	1.9
					W/D	8.2	8.9	9.4
	MY00-YE/			MY01-Yea			MY02-Year	
Station	Elevation	Notes	Station	Elevation		Station	Elevation	Notes
0.00	263.84		11.46	263.25	LPIN	11.46	263.25	LPIN
11.46	263.25	LPIN	18.59	261.67		12.53	263.10	
11.90	263.17		25.70	260.34		14.95	262.59	
14.29	262.76		32.76	259.76		18.94	261.67	
17.16	262.06		34.95	259.71		23.47	260.70	
21.29	261.07		37.85	259.29	BKF L TOBL	27.38	260.23	
24.94	260.40		40.42	258.00		34.37	259.81	
29.43	260.09		41.37	257.54	TOE L	35.96	259.62	BKF L
38.04	259.37	BKF L TOBL	43.11	257.21		37.58	259.36	TOBL
40.27	258.13		45.35	256.92		39.74	258.56	
41.78	257.51		47.47	256.79		41.08	257.57	TOE L
43.14	257.19		49.40	256.63	TW	42.09	257.44	
43.92	257.16		50.91	256.66	TOE R	43.92	257.00	
46.07	256.88		56.60	261.24	TOBR	44.99	256.86	TW
47.81	256.84		59.41	261.60	RPIN	46.54	257.13	
49.84	256.71					49.00	256.87	
50.92	256.50	TW				51.45	256.91	TOE R
51.32	256.53					52.45	258.77	BKF R
51.55	256.86					55.08	260.93	TOBR
51.59	257.39					57.25	261.28	
51.85	257.89					59.53	261.62	RPIN
52.29	258.83	BKF R						
53.88	259.61							
55.53	260.82							
57.29	261.32	TOBR						
59.48	261.63	RPIN						
70.78	263.00							

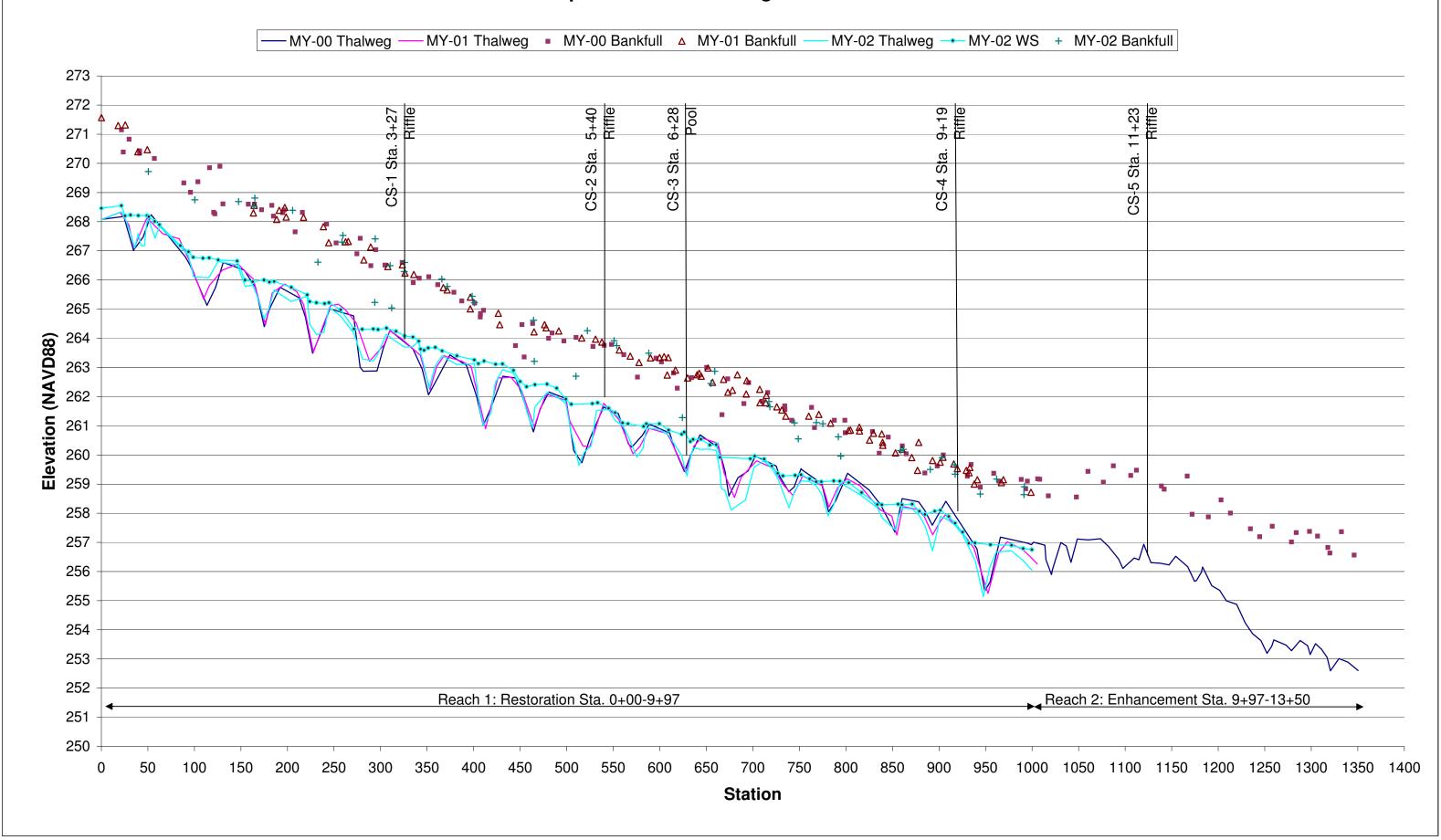
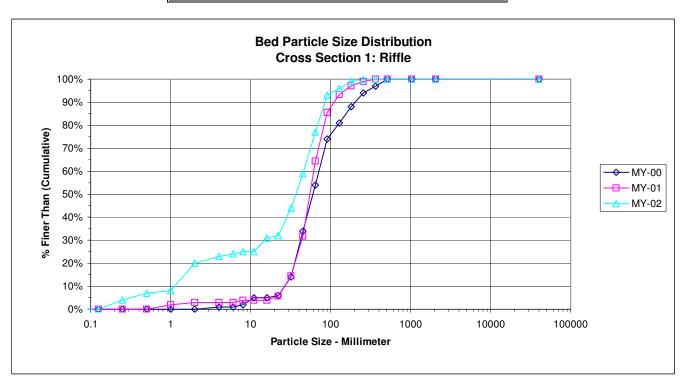
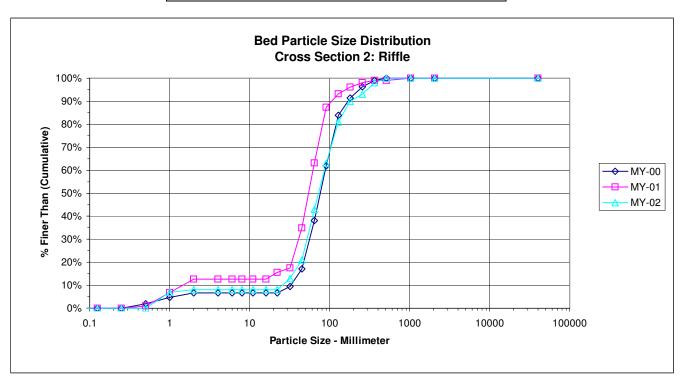


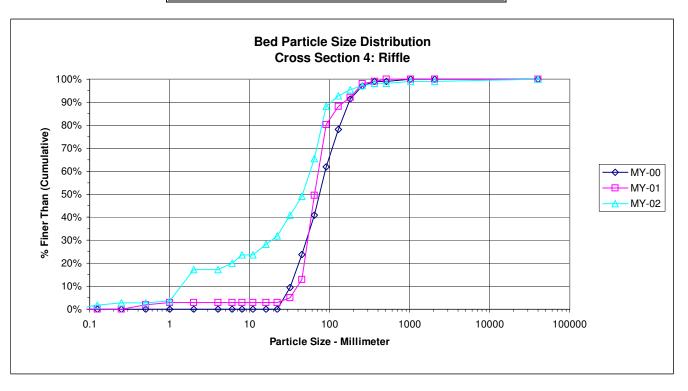
Photo of XS-5, looking in the downstream direction



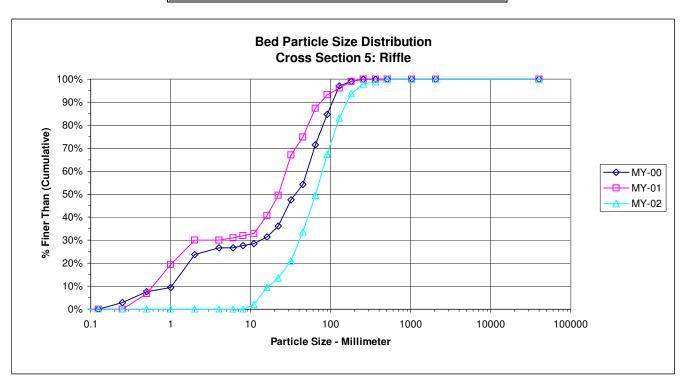
Chapel Creek MY-02 Longitudinal Profile


			PEBBLE C	OUNT									
Project:	Chapel Creek					Date:	10/6/2010)					
Location:	Cross Section	#1											
	Particle Counts												
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative					
	Silt/Clay	< 0.062	S/C	0	0	0	0%	0%					
	Very Fine	.062125	S	0	0	0	0%	0%					
	Fine	.12525	Α	4	0	4	4%	4%					
	Medium	.2550	N	3	0	3	3%	7%					
	Coarse	.50 - 1.0	D	1	0	1	1%	8%					
.0408	Very Coarse	1.0 - 2.0	S	12	0	12	12%	20%					
.0816	Very Fine	2.0 - 4.0		3	0	3	3%	23%					
.1622	Fine	4.0 - 5.7	G	1	0	1	1%	24%					
.2231	Fine	5.7 - 8.0	R	1	0	1	1%	25%					
.3144	Medium	8.0 - 11.3	A	0	0	0	0%	25%					
.4463	Medium	11.3 - 16.0	V	6	0	6	6%	31%					
.6389	Coarse	16.0 - 22.6	::::E::::	1	0	1	1%	32%					
.89 - 1.26	Coarse	22.6 - 32.0	L.	12	0	12	12%	44%					
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	15	0	15	15%	59%					
1.77 - 2.5	Very Coarse	45.0 - 64.0		18	0	18	18%	77%					
2.5 - 3.5	Small	64 - 90	::::::C::::::	16	0	16	16%	93%					
3.5 - 5.0	Small	90 - 128	О	3	0	3	3%	96%					
5.0 - 7.1	Large	128 - 180	:::::B:::::	3	0	3	3%	99%					
7.1 - 10.1	Large	180 - 256	Ļ	1	0	1	1%	100%					
10.1 - 14.3	Small	256 - 362	В	0	0	0	0%	100%					
14.3 - 20	Small	362 - 512	::::: <u> </u>	0	0	0	0%	100%					
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%					
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	100%					
	Bedrock		BDRK	0	0	0	0%	100%					
			Totals	100	0	100	100%	100%					

	d16	d35	d50	d84	d95
I	1.7	24.5	37.2	75.4	115.3


			PEBBLE C	COUNT				
Project:	Chapel Creek					Date:	10/6/2010)
Location:	Cross Section	#2						
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	0	0	0	0%	0%
	Very Fine	.062125	S	0	0	0	0%	0%
	Fine	.12525	Α	0	0	0	0%	0%
	Medium	.2550	N	0	0	0	0%	0%
	Coarse	.50 - 1.0	D	7	0	7	7%	7%
.0408	Very Coarse	1.0 - 2.0	S	1	0	1	1%	8%
.0816	Very Fine	2.0 - 4.0		0	0	0	0%	8%
.1622	Fine	4.0 - 5.7	G	0	0	0	0%	8%
.2231	Fine	5.7 - 8.0	::::R	0	0	0	0%	8%
.3144	Medium	8.0 - 11.3	Α	0	0	0	0%	8%
.4463	Medium	11.3 - 16.0	ν	0	0	0	0%	8%
.6389	Coarse	16.0 - 22.6	:::::E:::::	0	0	0	0%	8%
.89 - 1.26	Coarse	22.6 - 32.0	L	5	0	5	5%	13%
1.26 - 1.77	Very Coarse	32.0 - 45.0	: ::::S:::::	8	0	8	8%	21%
1.77 - 2.5	Very Coarse	45.0 - 64.0		22	0	22	22%	43%
2.5 - 3.5	Small	64 - 90	::::::C:::::	20	0	20	20%	63%
3.5 - 5.0	Small	90 - 128	0	18	0	18	18%	81%
5.0 - 7.1	Large	128 - 180	::::::B:::::	9	0	9	9%	90%
7.1 - 10.1	Large	180 - 256	Ŀ	3	0	3	3%	93%
10.1 - 14.3	Small	256 - 362	В	5	0	5	5%	98%
14.3 - 20	Small	362 - 512	L	2	0	2	2%	100%
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	100%
	Bedrock		BDRK	0	0	0	0%	100%
			Totals	100	0	100	100%	100%

d16	d35	d50	d84	d95
36.9	57.1	73.1	145.3	298.4


			PEBBLE C	COUNT				
Project:	Chapel Creek					Date:	10/6/2010)
Location:	Cross Section	#4						
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	0	0	0	0%	0%
	Very Fine	.062125	S	2	0	2	2%	2%
	Fine	.12525	Α	1	0	1	1%	3%
	Medium	.2550	N	0	0	0	0%	3%
	Coarse	.50 - 1.0	D	1	0	1	1%	4%
.0408	Very Coarse	1.0 - 2.0	S	15	0	15	14%	17%
.0816	Very Fine	2.0 - 4.0		0	0	0	0%	17%
.1622	Fine	4.0 - 5.7	G	3	0	3	3%	20%
.2231	Fine	5.7 - 8.0	::::R:::::	4	0	4	4%	24%
.3144	Medium	8.0 - 11.3	Α	0	0	0	0%	24%
.4463	Medium	11.3 - 16.0	Α	5	0	5	5%	28%
.6389	Coarse	16.0 - 22.6	::::E:::::	4	0	4	4%	32%
.89 - 1.26	Coarse	22.6 - 32.0	L. L.	10	0	10	9%	41%
1.26 - 1.77	Very Coarse	32.0 - 45.0	:::::S:::::	9	0	9	8%	49%
1.77 - 2.5	Very Coarse	45.0 - 64.0		18	0	18	16%	65%
2.5 - 3.5	Small	64 - 90	C	25	0	25	23%	88%
3.5 - 5.0	Small	90 - 128	0	5	0	5	5%	93%
5.0 - 7.1	Large	128 - 180	::::::B::::::	3	0	3	3%	95%
7.1 - 10.1	Large	180 - 256	Ŀ	2	0	2	2%	97%
10.1 - 14.3	Small	256 - 362	B	1	0	1	1%	98%
14.3 - 20	Small	362 - 512		0	0	0	0%	98%
20 - 40	Medium	512 - 1024	D	1	0	1	1%	99%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	99%
	Bedrock		BDRK	1	0	1	1%	100%
			Totals	110	0	110	100%	100%

l	d16	d35	d50	d84	d95
	1.9	25.5	46.1	85.2	171.3

			PEBBLE C	COUNT				
Project:	Chapel Creek					Date:	10/6/2010)
Location:	Cross Section	#5						
				Particle	Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	0	0	0	0%	0%
	Very Fine	.062125	S	0	0	0	0%	0%
	Fine	.12525	Α	0	0	0	0%	0%
	Medium	.2550	N	0	0	0	0%	0%
	Coarse	.50 - 1.0	D	0	0	0	0%	0%
.0408	Very Coarse	1.0 - 2.0	S	0	0	0	0%	0%
.0816	Very Fine	2.0 - 4.0		0	0	0	0%	0%
.1622	Fine	4.0 - 5.7	G	0	0	0	0%	0%
.2231	Fine	5.7 - 8.0	R	0	0	0	0%	0%
.3144	Medium	8.0 - 11.3	Α	2	0	2	2%	2%
.4463	Medium	11.3 - 16.0	ν	7	0	7	7%	9%
.6389	Coarse	16.0 - 22.6	:::::E:::::	4	0	4	4%	14%
.89 - 1.26	Coarse	22.6 - 32.0	L	7	0	7	7%	21%
1.26 - 1.77	Very Coarse	32.0 - 45.0	:::::S:::::	12	0	12	13%	34%
1.77 - 2.5	Very Coarse	45.0 - 64.0		15	0	15	16%	49%
2.5 - 3.5	Small	64 - 90	::::::C:::::	17	0	17	18%	67%
3.5 - 5.0	Small	90 - 128	O	15	0	15	16%	83%
5.0 - 7.1	Large	128 - 180	::::::B:::::	10	0	10	11%	94%
7.1 - 10.1	Large	180 - 256	Ŀ	4	0	4	4%	98%
10.1 - 14.3	Small	256 - 362	В	1	0	1	1%	99%
14.3 - 20	Small	362 - 512	L	1	0	1	1%	100%
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	100%
	Bedrock		BDRK	0	0	0	0%	100%
			Totals	95	0	95	100%	100%

l	d16	d35	d50	d84	d95
	25.1	46.6	64.8	132.2	203.8

						Cha					eam Da			o. 77											
Parameter	Gauge ²	Reg	gional C	urve			•	g Cond					•	each(es) Data			Design			Мо	nitorin	g Basel	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft)	-	-	-	-	9.5	12.7	-	16.3	-	-	16.2	16.7	-	21.1	-	-	-	17.5	-	19.9	20.7	20.5	21.6	0.89	3
Floodprone Width (ft)					18	24.7	-	35	-	-	58	97	-	120	-	-	61	102	126	61	184	224	266	108	3
Bankfull Mean Depth (ft)	-	-	-	-	1.4	1.7	-	1.9	-	-	1.3	1.6	-	1.7	-	-	-	1.59	-	0.87	1.2	1.1	1.5	0.34	3
¹ Bankfull Max Depth (ft)	-				2.8	3.2	ı	3.8	-	-	2.2	2.3	-	2.5	-	ū	2.3	2.4	2.5	1.8	2.2	2.3	2.4	0.34	3
Bankfull Cross Sectional Area (ft ²)	-	•	-	-	17.5	21.6	,	29.2	-	-	27.2	27.5	-	27.8	-	•	-	27.8	-	18.9	24.1	22.7	30.6	6	3
Width/Depth Ratio	-				5	4.6	-	9.1	-	-	9.6	10.2	-	16	-	1	-	11	-	12.9	18.7	18.5	24.8	0.89	3
Entrenchment Ratio	-				1.5	2.1	-	3.2	-	-	3.5	5.8	-	7.2	-	•	3.5	5.8	7.2	2.8	9	11.3	13	5.5	3
¹ Bank Height Ratio	-				1.7	3.3	-	4.4	•	-	1.5	1.6	٠	1.7	-	ì	-	1	٠	1	1	1	1	0	3
Profile	_				_						_						_			_					
Riffle Length (ft)					3.5	6.8	-	13	-	-	7	21.2	-	42	-	-	7	21.2	42	13.7	23.1	22.91	36.6	6.2	17
Riffle Slope (ft/ft)					0	0.01	1	0.05	-	-	0	0.03	-	0.1	-	-	0	0.03	0.1	0	0.02	0.02	0.05	0.01	17
Pool Length (ft)					6	6.5	-	7	-	-	6.4	13.2	-	19.4	-	-	6.5	13.2	19.4	26.8	34.2	34.3	40.8	4.7	16
Pool Max depth (ft)					2.1	2.7	-	3.5	-	-	2.5	3	-	4.2	-	=	2.5	3	4.2				0.7	16	
Pool Spacing (ft)					16	42	-	91	-	-	41	56	-	78	-	-	40	55	75	40	56	54	71	9.1	15
Pattern																									
Channel Beltwidth (ft)					15	17.7	-	20	-	-	28.7	22	-	40	-	-	21.2	27.6	38.5	31.9 43.8 40.9 75.9 1			10.9	14	
Radius of Curvature (ft)					14.6	23.4	-	30.1	-	-	10.6	20	-	38.2	-	-	10.2	19.3	36.8	23.7	44.6	42.9	66.7	12.1	13
Rc:Bankfull width (ft/ft)					1.2	1.9	-	2.4	-	-	0.58	1.1	-	2.1	-	-	0.58	1.1	2.1	1.1	2.2	2.1	66.7	0.59	13
Meander Wavelength (ft)					55	58.3	-	65	-	-	113	125	-	140	-	-	109	120	135	90	104	104	121	9.1	13
Meander Width Ratio					1.2	1.43	-	1.62	-	-	1.2	1.6	-	2.2	-	ı	1.2	1.6	2.2	1.6	2.2	2.1	2.8	0.55	14
Transport parameters																									
Reach Shear Stress (competency) lb/f	2							98										-					-		
Max part size (mm) mobilized at bankful							13	20										-					-		
Stream Power (transport capacity) W/m2	2							-										-					-		
Additional Reach Parameters																									
Rosgen Classification	-						G	3 4					C4	/E4				C4				C	4		
Bankfull Velocity (fps)	-	-	-	-			6.	83										5.8				6.	92		
Bankfull Discharge (cfs)	-	-	-	-			10	60																	
Valley length (ft)							8	70					3	50											
Channel Thalweg length (ft)							9	57					4	00				994				99	94		
Sinuosity (ft)							1.	06					1.	.14				1.14				1.	14		
Water Surface Slope (Channel) (ft/ft)	-							-						-				-				0.0	105		
BF slope (ft/ft)	-						0.0	128					0.0	011				0.012				0.0	111		
³ Bankfull Floodplain Area (acres)								-	-					-				-	-				-		
⁴ % of Reach with Eroding Banks								-						-											
Channel Stability or Habitat Metric								-						-											
Biological or Other	•							-			I			-											

Shaded cells indicate that these will typically not be filled in.

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)
Chapel Creek Stream Restoration-Project No. 77 Reach 1 (961 feet)

Parameter		Pre	e-Exis	ting C	onditi	on		Refe	rence	Reac	h(es)	Data		De	sign			As-bu	ilt/Bas	eline	
¹ Ri% / Ru% / P% / G% / S%													37%	61%			41%	57%			
¹ SC% / Sa% / G% / C% / B% / Be%																					
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	1.6	7.2	11.7	22	30.3		0.39	1.3	11.4	69.8	164.9										
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																					
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																					

Shaded cells indicate that these will typically not be filled in.

- 1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
- 2 = Entrenchment Class Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates
- 3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2.3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary. The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing, and the rehabilitated states as well as comparisons to the reference distributions. ER and BHR have been addressed in prior submissions as a subsample (gross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-construction distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution coverage necessary to provide manningful comparisons.

Table 11a	. Mon	itoring) Data	- Dime	ension	al Mor	pholo	gy Sur	nmary	(Dime	ension	al Para	ametei	rs – Cı	ross S	ection	s)				
		(Chapel	Creek	Strea	m Res	toratio	on-Pro	ject N	o. 77 l	Reach	1 (961	feet)								
			Cross S	Section	1 (Riffle))				Cross S	ection 2	2 (Riffle)					Cross S	Section	3 (Pool)		
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used	266.29	266.26	266.29					264.00	264.01	264.00					262.67	262.79	262.67				
Bankfull Width (ft)	19.86	19.17	19.07					22.96	19.11	31.02					24.84	27.12	22.88				
Floodprone Width (ft)	224	224	224					266	266	266					95	95	95				
Bankfull Mean Depth (ft)	1.5416	1.5241	1.4766					1.3016	1.3078	1.1881					1.2771	1.1481	1.3418				
Bankfull Max Depth (ft)	2.4	2.31	2.59					2.44	2.02	2.95					3.28	3.2	3.07				
Bankfull Cross Sectional Area (ft ²)	30.619	29.221	28.165					29.886	24.998	36.858					31.724	31.14	30.694				
Bankfull Width/Depth Ratio	12.884	12.579	12.918					17.641	14.616	26.112					19.45	23.625	17.048				
Bankfull Entrenchment Ratio	11.278	11.684	11.743					11.585	13.916	8.5742					3.8245	3.5025	4.153				
Bankfull Bank Height Ratio	1	1	1					1	0.6782	0.8712					1	1	0.5375				
Cross Sectional Area between end pins (ft²)	339.13	327.85	321.93					245.58	193.07	211.96					188.14	186.78	186.23				
d50 (mm)	60.2	55.6	37.2					77	55.2	73.1					N/A	N/A	N/A				
		•	Cross S	Section 4	4 (Riffle)			•	Cross S	Section (5 (Riffle))					•			
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+							
Record elevation (datum) used	250.85	250.80	250.85					250 37	250 20	250 37					1						

Bankfull Width (ft)	16.71	18.41	18.64			15.35	16.33	17.52		
Floodprone Width (ft)	92	92	92			48	48	48		
Bankfull Mean Depth (ft)	1.0659	1.0523	1.0642			1.8823	1.8282	1.8573		
Bankfull Max Depth (ft)	1.72	1.79	1.96			2.87	2.66	2.76		
Bankfull Cross Sectional Area (ft2)	17.808	19.377	19.838			28.895	29.85	32.549		
Bankfull Width/Depth Ratio	15.673	17.498	17.516			8.1553	8.9308	9.4358		
Bankfull Entrenchment Ratio	5.5069	4.9962	4.9353			3.1269	2.9398	2.739		
Bankfull Bank Height Ratio	1	0.9553	0.9031			1	1	0.9058		
Cross Sectional Area between end pins (ft2)	165.32	170.80	165.78			131.28	135.96	128.65		
d50 (mm)	75.8	64.4	46.1			36.6	22.3	64.8		

^{1 =} Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

																						ch Dat Reach														
Parameter			Ва	seline					N	IY-1		- 0.	арсі	Oicc		Y-2	103101	ation	1 10,	COLIN	M\		(, o i ic			M	Y- 4					M	Y- 5		
Dimension and Substrate - Riffle only	Min	Mear	Med	d Max	: SD ⁴	n	Mir	Mea	n Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n
Bankfull Width (ft)	15.4	19.6	20.7	21.6	2.90	6 4	16.3	3 18.5	1 18.9	19.86	1.535	4	17.52	21.57	18.86	31.02	6.339	4																		
Floodprone Width (ft)	48	149.8	142.	5 266	111.	4 4	48.0	9 157.	5 158	266	104	4	48	157.5	158	266	104	4																		
Bankfull Mean Depth (ft)	0.87	1.35	1.32	5 1.88	0.44	9 4	1.04	7 1.42	9 1.42	1.828	0.33	4	1.064	1.397	1.332	1.857	0.352	4																		
¹ Bankfull Max Depth (ft)	1.78	2.348	2.37	2.87	0.44	6 4	1.86	5 2.20	7 2.15	2.66	0.355	4	1.96	2.565	2.675	2.95	0.429	4																		
Bankfull Cross Sectional Area (ft ²)	18.9	25.28	25.8	30.6	5.44	4	20.7	9 26.1	2 26.9	29.8	4.248	4	19.84	29.35	30.36	36.86	7.268	4																		
Width/Depth Ratio	8.16	16.07	15.7	24.7	7.14	1 4	8.93	1 13.6	6 13.3	18.98	4.166	4	9.436	16.5	15.22	26.11	7.215	4																		
Entrenchment Ratio	2.81	7.56	7.21	5 13	5.34	7 4	2.94	5 8.37	6 8.15	14.2	5.443	4	2.739	6.998	6.755	11.74	3.975	4																1 1		
¹ Bank Height Ratio	0.97	0.993	3 1	1	0.01	5 4	0.68	7 0.90	1 0.95	3 1	0.148	4	0.871	0.92	0.904	1	0.056	4																		
Profile																																				
Riffle Length (ft)	13.7	23.1	22.9	1 36.6	6.2	17	12.9	6 22.0	4 20.3	34.75	6.42	17	15.09	27.92	26.54	44.53	8.84	17																	\Box	
Riffle Slope (ft/ft)	(0.02	_	_		17					0.009	17	0.004	0.017	0.016	0.04	0.011	16																		
Pool Length (ft)	26.8	34.2	34.3	3 40.8		_	_	_		_	9.33	17			26.33			17																		
Pool Max depth (ft)		3.8		4.7		_			6.75		0.57	17	2.59					17																†		
Pool Spacing (ft)	40	_	_	71							10.18		40.01				9.38	16																†		
Pattern																																				
Channel Beltwidth (ft)	31.9	43.8	40.9	75.9	10.9	14	1		1	1																										
Radius of Curvature (ft)																																				
Rc:Bankfull width (ft/ft)	1.1	2.2	2.1	66.7	0.59	13										Pa	ttern da	a will no				unless vis				data or	profile	data								
Meander Wavelength (ft)	90	104	104	121	9.1	13														moroaco	oigiiiio	ant omito		, ao o 10												
Meander Width Ratio	1.6	2.2	2.1	2.8	0.55	14																														
Additional Reach Parameters																																				
Rosgen Classification				C4						C4					(C4																				
Channel Thalweg length (ft)				994						994					9	94																				
Sinuosity (ft)				1.14						.14					1.	.15																				
Water Surface Slope (Channel) (ft/ft)			0.	.0105					0.	0105					0.0	117																				
BF slope (ft/ft)			0.	.0111					0.	0111					0.0	132																				
³ Ri% / Ru% / P% / G% / S%	41%		57%	5			389	0	59%				49%		51%																					
3SC% / Sa% / G% / C% / B% / Be%													0%	11%		38%		0%																		
3d16 / d35 / d50 / d84 / d95 /													16.4	38.42	55.28	109.5	197.2																			
² % of Reach with Eroding Banks															g	1%						•														
Channel Stability or Habitat Metric																																				
Riological or Other																																				

Shaded cells indicate that these will typically not be filled in.

1 - The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 - Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table

3 - Riffle, Run, Pool, Gilde, Step; SiltClay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

4. = Of value/needed only if the n exceeds 3

Appendix E. Hydrologic Data

Table 12. Verification of Bankfull Events

Tal	ble 12. Verification of	Bankfull Events	
Chapel	Creek Stream Restor	ation-Project No. 77	
Date of Data Collection	Date of Occurrence	Method	Photo #
30-Sep-10	30-Sep-10	Nearby NWS COOP station	N/A
30-Sep-10	30-Sep-10	Nearby USGS Stream gauge	N/A

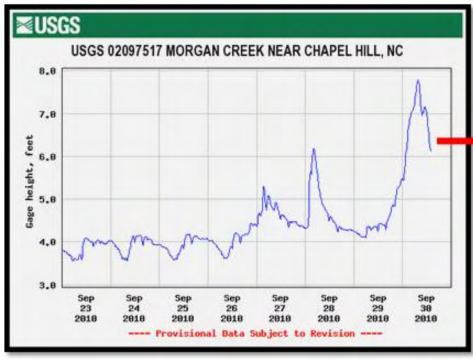
The stream crest gauge for the project location was vandalized. A new stream crest gauge was installed in November 2010. A significant rainfall event occurred on September 30, 2010, producing a bankfull event on Morgan Creek. It is therefore presumed that a bankfull event occurred in the same time period on Chapel Creek due to the 3.05 inches of rainfall that occurred within a 24 hour period. This rainfall event was observed at the NWS Cooperative Observer Station Chapel Hill 2 W (311677). Additional data for the rainfall event was collected from USGS Stream gauge 02097517 located at Morgan Creek near Chapel Hill, NC. This gauge is less than one mile, linear distance, from the downstream portion of the Chapel Creek project site. The USGS stream gauge shows the September 30, 2010 maximum creek level at approximately 3.5 feet above the average level from September 29, 2010.

Daily Almanac Page 1 of 1

NOWData - NOAA Online Weather Data

CHAPEL HILL 2 W (311677)

Daily Almanac
Date: Sep 30, 2010


Daily Values Max Temperature Min Temperature Avg Temperature Precipitation New Snowfall Snow Depth HDD (base 65)	Observed 73 61 67.0 3.05 - - 0	Normal 77 52 64 0.14 - - 3	Record/Year 92 in 1939 35 in 1895 81.5 in 1939 3.05 in 2010 0.0 in 2009+ 0 in 2009+ 16 in 1984	70 47 58.5 0.03 0.0 0
CDD (base 65)	2	3	17 in 1939	0
Month-To-Date Avg Max Temperature Avg Min Temperature Avg Temperature Total Precipitation Total Snowfall Avg Snow Depth Total HDD	Observed 87.8 63.1 75.4 6.08	Normal 81.3 58.1 69.7 4.45 - - 26	Record/Year 90.3 in 1941 50.6 in 1984 78.0 in 1925 24.01 in 1999 0.0 in 2009 0 in 2009 110 in 1984	Prev Year 79.9 60.1 70.0 2.61 0.0 0
Total CDD	298	167	445 in 1921	167

⁺ indicates record also occurred in previous years (last occurrence listed).

Official data and data for additional locations and years are available from the Regional Climate Centers and the National Climatic Data Center.

Morgan Creek berm openings 30 September, 2010. Arrow shows creek at ca. 6 feet. The maximum creek level (at ca. 7.8 feet) did not cause flow through the berm openings.

